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FOREWORD 

This document is one of sixteen sections that comprise the final 
report prepared by the Minneapolis-Honeywell Regulator Company for the 
National Aeronautics and Space Administration under contract XWW-563. 
The report is issued in the following sixteen sections to facilitate 
updating as progress warrants: 

. 

su-=Y 

Control of Plants Whose Representation Contains Derivatives 
of the Control Variable 

Modes of Finite Response Time Control 

A Sufficient Condition in Optl'dal Control 

Time Optimal Control of Linear Recurrence Systems 

Time-Optimal Bounded Phase Coordinate Control of Linear 
Recurrence Systems 

Penalty Functions and Bounded Phase Coordinate Control 

Linear Prograrmning and Bounded Phase Coordinate Control 

Time Optimal Control with Amplitude and Rate Limited Controls 

A Concise Formulation of a Bounded Phase Coordinate Control 
Problem as a Problem in the Calculus of Variations 

A Note on System Truncation 

State Determination for a Flexible Vehicle Without a Mode 
Shape Requirement 

An Application of the Quadratic Penalty Function Criterion 
to the Determination of a Idnear Control for a Flexible Vehicle 

Mhimum Disturbance Effects Control of Linear Systems with 
Linear Controllers 

An Alternate Derivation and Interpretation of the Drift-Mini- 
Principle 

A Minimax-Control for a Plant Subjected to a Known bad Disturbance 

_ -  

Section 1 (1541-TR 1) provides the motivation for the study efforts 
The and objectively discusses the significance of the results obtained. 

results of inconclusive and/or unsuccessfil investigations are presented. 
Linear programming is reviewed in detail adequate for sections 6, 8, and 16. 

It is shown in section 2 that the purely formal procedure for Synthe- 
sizing an optimum bang-bang controller for a plant whose representation 
contains derivatives of the control variable yields a correct result. 

- -  -_ _ _  - 
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In section 3 it is shown that the problem of controlling m cmponents 
(1 < m < n),, of the state vector for an n-th order linear constant coefficient 
plant, To zero in finite time can be reformulated as a problem of controlling 
a single component. 

Section 4 shows PontriagiribMaximum Principle is often a sufficient 
condition for optimal control of linear plants. 

Section 5 develops an algorithm for complting the time optimal control 
functions for plants represented by linear recurrence equations. 
may be to convex target sets defined by quadratic forms. 

Steering 

In section 6 it is shown that linear inequality phase constraints 
can be transformed i n t o  similar constraints on the control variables. 
Methods for finding controls are discussed. 

Existence of and approximations to optid bounded phase coordinate 
controls by use of penalty functions are discussed in section 7. 

In section 8 a maximum principle is proven for time-optimal control 
with bounded phase constraints. An existence theorem is .oroven. The 
problem solution is reduced to linear progrsnrming. 

A backing-out-of-the-origin procedure for obtaining trajectories for 
time-optimsl control with amplitude and rate limited control variables is 
presented in section 9. 

.Section 10 presents a reformulation of a time-optimal bounded phase 
coordinate problem into a standard calculus of variations problem. 

A mathematical method for assessing the approximation of a system by 
a lower order representation is presented in section 11. 

Section I2 presents a method for determination of the state of a 
flexible vehicle that does not require mode shape information. 

The quadratic penalty f'unction criterion is applied in section 13 to 
develop a linear control law for a flexible rocket booster. 

In section 14 a method for feedback control synthesis for minimum load 
disturbance effects is derived. Examples are presented. 

Section 15 shows that a linear fixed gain controller for a linear 
constant coefficient plant may yield a 'certain type of invariance to 
disturbances. 
the concept of complete controllability. 
obtained as a specific example. 

Conditions for obtaining such invariance are derived using 
The drift minimum condition is 

In section 16 linear programming is used to determine a control function 
that minimizes the effects of a known load disturbance. 
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STATE DETERMINATION FOR A FLEXIBLE 

VMiICLE WITHOUT A MODE SHAPE REQUIREMENT* 

By E. E. Fisher * 
ABSTRACT 

A problem involving state determination for a flexible vehicle 

without known mode shapes is considered. Conditions are established 

which allow a least squares estimate of certain system parameters. 

Knowledge of these parameters allows state determination. 

The motion of a flexible vehicle is assumed given by the 

equation 
e 

x = A x + b u  

where x is an n-vector representing the state of the system, u 

is a scalar control variable, A is a constant n by n matrix, and 

b is a constant n-vector. The system is considered to be 

controllable, which is taken to mean that the vectors 

A n-lb ,Anw2, . . ,Ab ,b are linearly independent ** . A vector z which 

is related to x by a non-singular transformation 

z = M x  (2 1 
is observable (capable of being measured). M is a constant 

non-singular n by n matrix which depends on mode shape data but 
is unknown. The matrices A and b are assumed known. Time 

histories of z and u are assumed given. Conditions are sought 
* which allow the determination of the matrix M from the known data. 

* Prepared under contract NASw-563 for the NASA 
$ Research Scientist , Minneapolis-Honeywell Regulator Company, --..-- Minneapolis Minnesota. 
** See for instance reference 1 

_--_---___------_---_______o______ 
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T h i s  would allow estimation of x by the equation 
-1 x = M  z 

ANALYSIS 

U s e  i s  made of equations 1,2, and 3 t o  y ie ld  an equation 

of motion f o r  z given by 

a = MAM-Iz + mu. 

C 6 MI1, d = A Mb 
The subst i tut ion 

reduces equation (4 )  t o  

5 = C Z  + du. 

Final ly ,  this is writ ten as the in t eg ra l  equation 
t t 

Z ( t )  - z ( t o )  = C/ Z ( 7 ) d T  + d J ~ ( 7 ) d ~ .  

If t h e  components of the vector z ( t )  - z ( to )  a r e  denoted by 
4 

( t ) , f , ( t ) ,  ..., fn ( t ) ,  the components of the vector 1 
t t 

1 z(7)d'r a re  denoted by gl( t ) ,g2(t) , . . .&(t) ,  and I u(7)d.r i s  

denoted by v ( t ) ,  then equation 7 takes the -component form 

(3) 

f i ( t )  = C i l  g 1 (t)  + CiZg2(t) + a * * +  Cin%(t) + d i v ( t )  (8 1 
f o r  i = 1,2,...,n 

Since the functions g l , g 2 J . . o g n , f l , o ~ . f ~ , v  a re  known functions 

o r  i n t eg ra l s  of known functions, they are known. 

Suppose that by comparison of the mown functions gl,g2,...,%,v 

w i t h  the functions fi it were possible t o  determine the matrices 

C and d. Then the matrix M would be known because M s a t i s f i e s  the 

equation 

( 9 )  1 L = lvIN or  M = LN- 
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where L is a matrix 

matrix with columns 

with columns d,Cd,C*d,. .Cn''d; and N is a 

b,Ab,A2b,..., A"-%. The matrix N is non- 

singular because the vectors b ,Ab,A2b, . . ,An''b are linearly 

independent . 
The remainder of the analysis is devoted to establishing a 

sufficient condition which allows the estimation of the matrices 
C and d by the method of least squares. 

Minimization with respect to c and di of the n error functions iJ 
El,E2,...En given by 

for i = 1,2,...9n will yield n sets of n+l linear equations 

for the unknowns c 

glJg2,.*.$1, and v are linearly independent these equations w i l l  

be soluble for c 

insure this linear independence is now established. 

and di. In the event that the functions 13 

and di. A condition which is sufficient to 13 

Since the set of functions glJg2,*..$r,v are integrals of 

the functions z1,z2,...zn,u they are linearly independent if and 

only if the latter are. The latter set is, however, obtained from 

the state components and control variable, xl,~,*..xn,u by a 

non-singular linear transformation. These are linearly 

independent if and only if the state components and the control 

variable are linearly indeper&nt,.Itwill now be shown that a 

requirement for non-linearity 02 the controller is sufficient to 

insure this linear independence. 
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* 

A control ler  u = u(x) w i l l  be called non-linear if u i s  

not given by an equation of the form 

u = k l X l  + k2~2+.  e+%% 

where kl,k;l, ...% are constants and the  equation holds 

ident ica l ly  i n  time. 

The common l i n e a r  feedback cont ro l le r  i s  not non-linear. 

On the  other  hand, a bang-bang cont ro l le r  is non-linear. T h i s  

( 9 )  

is  seen by a continuity argument. The zero function 

be a l inea r  control ler  with kl = 5 = ... = ku = 0. 

theorem finishes the discussion, 

is  seen t o  

The following 

THEOREM. 

u L= u(x) be a control variable which together satisfy equation (1). 

Let the system given by equation (1) be controllable.  

the control ler  u = u(x) is  a non-linear control ler  the functions 

x1,x2,...,xn,u w i l l  be l inear ly  independent. 

PROOF: 

i f  and only i f  there  is  no non-trivial  l i n e a r  relationship 

between them. Thus it  i s  suff ic ient  t o  prove that the t ru th  of a 

l i n e a r  re la t ionship elxl + e x +...+ e x + en+lu = 0 necessarily 

Let  x ~ , x ~ ~ . . . ~ x ~  be state vector components and l e t  

Then i f  

The functions x ~ , x ~ , . . . ~ x ~ , u  w i l l  be l i nea r ly  idependent  

2 2  n n  
implies t ha t  el = e2 = . . . = en - - en+l = 0. 

The t ru th  of a l inea r  relationship w i t h  en+l nonzero would 

imply that  u wa3 a l i nea r  combination of x,,x~,...,x~; 
& C  

tha t  i s  tha t  u was a l i nea r  control ler .  Since t h i s  

excluded, it must be that en+l = 0. 

A l i nea r  relationship elxl + e x +...+ e n s  = 

assumed t rue  and it  i s  shown tha t  t h i s  implies el = 

e = (el,e2,...,en) i s  taken as a row matrix and the 

2 2  

L A  

has been 

0 is  thus 

relat ionship 



is written in matrix form as ex = 0. On differentiation this 

yields e? = 0. 

Because u is a non-linear controller, it must be that eb = 0. 

eAx = 0 and by differentiation e& = 0. This, by equation 1, 

yields eA2x + eAb = 0, Because u is a non-linear controller, it 

must also be that eAb = 0. 

results eb = 0, eAb = 0, ,.. eAn-'b = 0. 

to n linearly independent n-dimensional vectors, i.e., e is the 

zero vector, which was to be proved. 

Then by use of equation (1) eAx + ebu = 0. 

Thus, 

Continuing in this manner there 

That is, e is orthogonal 

CONCLUSIONS 

It has been demonstrated that,given a controllable plant 

with non-linear controller and given time histories of n functions 

which depend on the state components xi through a non-singular =i 
linear transformation, 

least squares to establish the matrix of the transformation. 

The demonstration establishes, for the flexible vehicle problem, 

the possibility of an "adaptive system" capable of state 
determination without complete knowledge of mode shapes. 

it is possible by the method of 
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